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Abstract. Let C
′

= C ∪ {∞} be the extended complex plane and
M =

〈
x, y : x2 = y6 = 1

〉
, where x(z) = −1

3z and y(z) = −1
3(z+1) are

the linear fractional transformations from C
′ → C

′
. Let m be a square-

free positive integer. Then Q∗(
√

n) = {a+
√

n
c : a, c 6= 0, b = a2−n

c ∈
Z and (a, b, c) = 1} where n = k2m, is a proper subset of Q(

√
m)

for all k ∈ N . For non-square n = 3h
∏r

i=1 pki
i , it was proved in an

earlier paper by the same authors that the set Q
′′′

(
√

n) = {α
t : α ∈

Q∗(
√

n), t = 1, 3} is M -set ∀ h ≥ 0 whereas if h = 0 or 1, then
Q∗∗∗√n) = {a+

√
n

c : a+
√

n
c ∈ Q∗(

√
n) and 3 | c} is an M -subset

of Q
′′′

(
√

n) = Q∗(
√

n) ∪ Q∗∗∗(
√

9n). In this paper we prove that if
h ≥ 2, then Q

′′′
(
√

n) = (Q∗(
√

n
9 )\Q∗∗∗(√n

9 ))∪Q∗(
√

n)∪Q∗∗∗(
√

9n)
and also determine its proper M -subsets. In particular Q(

√
m) \ Q =

∪Q
′′′

(
√

k2m) for all k ∈ N .
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1. INTRODUCTION

Throughout the paper we take m as a square free positive integer. Since every element
of Q(

√
m) \ Q can be expressed uniquely as a+

√
n

c , where n = k2m, k is any positive
31
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integer and a, b = a2−n
c and c are relatively prime integers and we denote it by αn(a, b, c)

or α(a, b, c). Then

Q∗(
√

n) = {a +
√

n

c
: a, c, b =

a2 − n

c
∈ Z and (a, b, c) = 1},

Q
′′′

(
√

n) = {α

t
: α ∈ Q∗(

√
n), t = 1, 3},

Q∗∗∗ (
√

n) = {a +
√

n

c
:

a +
√

n

c
∈ Q∗(

√
n) and 3 | c}

are subsets of the real quadratic field Q(
√

m) for all n and Q(
√

m) \Q is a disjoint union
of Q∗(

√
n) for all n. If α(a, b, c) ∈ Q∗(

√
n) and its conjugate α have opposite signs then

α is called an ambiguous number [7]. A non-empty set Ω with an action of a group G on
it, is said to be a G -set. We say that Ω is a transitive G-set if, for any p, q in Ω there exists
a g in G such that pg = q.

We are interested in linear-fractional transformations x, y satisfying the relations x2 =
yr = 1, with a view to studying an action of the group 〈x, y〉 on real quadratic fields. If
y : z → az+b

cz+d is to act on all real quadratic fields then a, b, c, d must be rational numbers,

and can be taken to be integers. Thus (a+b)2

ad−bc is rational. But if z → az+b
cz+d is of order of

r, one must have (a+b)2

ad−bc = ω + ω−1 + 2, where ω is a primitive r-th root of unity. Now
ω + ω−1 is rational, for a primitive r-th root, only if r = 1, 2, 3, 4 or 6, so that these are
the only possible orders of y. The group 〈x, y : x2 = yr = 1〉 is cyclic of order 2 or
D∞(an infinite dihedral group ) according as r = 1 or 2. For r = 3, the group 〈x, y〉 is
the modular group PSL(2, Z). The fractional linear transformations x, y with x(z) = −1

3z

and y(z) = −1
3(z+1) generate a subgroup M of the modular group which is isomorphic to

the abstract group 〈x, y : x2 = y6 = 1〉. It is a standard example from the theory of the
modular group. It has been shown in [10] that the action of M on the rational projective
line Q ∪ {∞} is transitive.

In our case the set Q(
√

m) \ Q is an M -set. It is noted that M is the free product of
C2 = 〈x : x2 = 1〉 and C6 = 〈x : y6 = 1〉. The action of the modular group PSL(2, Z)
on the real quadratic fields has been discussed in detail in [1, 6, 8, 9, 11, 12]. The actual
number of ambiguous numbers in Q∗(

√
n) has been discussed in [8] as a function of n.

In a recent paper [11], the authors have investigated that the cardinality of the set Ep,
p a prime factor of n, consisting of all classes [a, b, c](mod p) of the elements of Q∗(

√
n)

is p3 − 1 and obtained two proper G-subsets of Q∗(
√

n) corresponding to each odd prime
divisor of n. The same authors in [12] have determined the cardinality of the set Epr ,
r ≥ 1, consisting of all classes [a, b, c](mod pr) of the elements of Q∗(

√
n) and have deter-

mined, for each non-square n, the G-subsets of an invariant subset Q∗(
√

n) of Q(
√

m)\Q
under the modular group action by using classes [a, b, c](mod n). Real quadratic irra-
tional numbers under the action of the group M have been studied in [3, 4, 5, 7, 10].
Closed paths in the coset diagrams under the action of a proper subgroup of M on Q(

√
m)

have been discussed in [4]. M. Aslam Malik et al. in [2] have studied the action of
H = 〈x, y : x2 = y4 = 1〉 , where x(z) = −1

2z and y(z) = −1
2(z+1) , on Q(

√
m) \ Q. The

same authors, in [3], have discussed the properties of real quadratic irrational numbers un-
der the action of the group M . The authors proved, in [3], that if n ≡ 1, 3, 4, 6 or 7(mod 9)
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then Q∗∗∗(
√

n) is an M -subset of Q(
√

m) \Q and Q
′′′

(
√

n) = Q∗(
√

n) ∪Q∗∗∗(
√

9n).

In this paper we extend these results for all non-square integers n and give some mod-
ifications of Lemma 1.1 of [3] for the case n ≡ 0(mod 9) and prove that Q

′′′
(
√

n) =
(Q∗(

√
n
9 ) \ Q∗∗∗(

√
n
9 )) ∪ Q∗(

√
n) ∪ Q∗∗∗(

√
9n) which shows that Q(

√
m) \ Q is the

union of Q
′′′

(
√

k2m) ∀k ∈ N . However if n and n′ are two distinct non-square positive
integers then Q∗(

√
n) ∩Q∗(

√
n′) = φ whereas Q

′′′
(
√

n) ∩Q
′′′

(
√

n′) may or may not be
empty. In particular Q

′′′
(
√

n) ∩ Q
′′′

(
√

9n) is not empty. In fact we prove that a superset
namely

Q∗∗∗(
√

9n) ∪ {α

3
: α =

3a +
√

9n

c
∈ Q∗(

√
9n) \Q∗∗∗(

√
9n)}

of Q∗∗∗(
√

9n) is an M -subset of Q(
√

m) \Q.
We have also found M -subsets of Q

′′′
(
√

n) such that these may or may not be transitive.
However they help in determining the transitive M -subsets (M -orbits). The notation is
standard and we follow [3], [9], [11] and [12]. In particular (·/·) denotes the Legendre
symbol and x(Y ) = {−1

3α : α ∈ Y } for each subset Y of Q(
√

m) \ Q. Throughout this
paper, n denotes a non-square positive integer and α denotes a+

√
n

c with b = a2−n
c such

that (a, b, c) = 1.

2. PRELIMINARIES

The following results of [3], [11] and [12] will be used in the sequel.

Lemma 1. ([3]). Let α = a+
√

n
c ∈ Q∗(

√
n) with b = a2−n

c . Then:
1. If n 6≡ 0(mod 9) then α

3 ∈ Q∗∗∗(
√

n) if and only if 3 | b.
2. α

3 ∈ Q∗∗∗(
√

9n) if and only if 3 - b.

Theorem 2. ([3]) The set Q
′′′

(
√

n) = {α
t : α ∈ Q∗(

√
n), t = 1, 3} is invariant under

the action of M .

Theorem 3. (see [3]) For each n ≡ 1, 3, 4, 6 or 7(mod 9),

Q∗∗∗
√

n) = {a +
√

n

c
:

a +
√

n

c
∈ Q∗(

√
n) and 3 | c}

is an M -subset of Q
′′′

(
√

n).

Corollary 4. ([3]) Q∗∗∗(
√

n) = ∅ if and only if n ≡ 2(mod 3).

It is well known that G = 〈x, y : x2 = y3 = 1〉 represents the modular group, where
x(z) = −1

z , y(z) = z−1
z are linear fractional transformations.

Theorem 5. ([11]) Let p be an odd prime factor of n. Then both of Sp
1 = {α ∈ Q∗(

√
n) :

(b/p) or (c/p) = 1} and Sp
2 = {α ∈ Q∗(

√
n) : (b/p) or (c/p) = −1} are G-subsets of

Q∗(
√

n). In particular, these are the only G-subsets of Q∗(
√

n) depending upon classes
[a, b, c] modulo p.

Theorem 6. ([12]) Let n = 2kpk1
1 pk2

2 · · · pkr
r where p1, p2, ..., pr are distinct odd primes

such that n is not equal to a single prime congruent to 1 modulo 8. Then the number of
G-subsets of Q∗(

√
n) is 2r namely S1≤i1,i2,i3,...,ir≤2 if k = 0 or 1. Moreover if k ≥ 2,

then each G-subset X of these G-subsets further splits into two proper G-subsets {α ∈
X : b or c ≡ 1(mod 4)} and {α ∈ X : b or c ≡ −1(mod 4)}. Thus the number of
G-subsets of Q∗(

√
n) is 2r+1 if k ≥ 2. More precisely these are the only G-subsets of

Q∗(
√

n) depending upon classes [a, b, c] modulo n.
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3. ACTION OF M = 〈x, y : x2 = y6 = 1〉 ON Q
′′′

(
√

n)

In this section we establish that if n contains r distinct prime factors then Q
′′′

(
√

n) \
Q∗∗∗(

√
n) is the disjoint union of 2r subsets which are invariant under the action of M .

However these M invariant subsets may further split into transitive M -subsets (M -orbits)
of Q

′′′
(
√

n), for example Q
′′′

(
√

37) splits into twelve orbits namely (
√

37)M , (−√37)M ,
( 1+

√
37

4 )M , (−1+
√

37
4 )M , ( 1+

√
37

−4 )M , (−1+
√

37
−4 )M , ( 1+

√
37

3 )M , (−1+
√

37
−3 )M , ( 1+

√
37

6 )M ,

(−1+
√

37
−6 )M , ( 1+

√
37

2 )M and ( 1+
√

37
−2 )M . The first six orbits are contained in A37

1 ∪x(A37
1 )

and last four orbits are contained in A37
2 ∪ x(A37

2 ) where A37
1 = S37

1 \ Q∗∗∗(
√

37) and
A37

2 = S37
2 \Q∗∗∗(

√
37).

Lemma 7. Let n ≡ 1, 3, 4, 6 or 7(mod 9). Let Y = S \ Q∗∗∗(
√

n) where S is any
G-subset of Q∗(

√
n). Then Y ∪ x(Y ) is an M -subset of Q

′′′
(
√

n) \Q∗∗∗(
√

n).

Proof. : By Theorem 3, we know that Q
′′′

(
√

n) \ Q∗∗∗(
√

n) is an M -set. For any α ∈
Q
′′′

(
√

n) \ Q∗∗∗(
√

n), Lemma 7 follows from the equations x(α) = −1
3α , x(−1

3α ) = α,
y(α) = −1

3(α+1) = −1
3α′ , where α′ = α + 1 and y(−1

3α ) = −1
3β , where β = −1

3α + 1. Since
every element of the group M =

〈
x, y : x2 = y6 = 1

〉
is a word in the generators x, y of

the group M and the transformations α 7−→ α + 1, α 7−→ α − 1 belong to both of the
groups G and M . ¤

The following corollary is an immediate consequence of Lemma 7 since we know by
Corollary 4 that Q∗∗∗(

√
n) = ∅ if and only if n ≡ 2(mod 3).

Corollary 8. Let n ≡ 2(mod 3). Let S be any G-subset of Q∗(
√

n). Then S ∪ x(S) is an
M -subset of Q

′′′
(
√

n).

Theorem 9. Let n ≡ 1, 3, 4, 6 or 7(mod 9) be a non-square positive integer such that
p | n. Let Ap

1 = Sp
1 \ Q∗∗∗(

√
n) and Ap

2 = Sp
2 \ Q∗∗∗(

√
n). Then both of Ap

1 ∪ x(Ap
1)

and Ap
2 ∪ x(Ap

2) are M -subsets of Q
′′′

(
√

n) \ Q∗∗∗(
√

n). Consequently the action of M

on Q
′′′

(
√

n) \Q∗∗∗(
√

n) is intransitive.

Proof. : follows from Theorem 5 and Lemma 7. ¤

We now extend Theorem 9 for each non-square n.

Theorem 10. Let n = 2kpk1
1 pk2

2 · · · pkr
r , where p1, p2, ..., pr are distinct odd primes and

k = 0 or 1. Let A1≤i1,i2,i3,...,ir≤2 = S1≤i1,i2,i3,...,ir≤2 \ Q∗∗∗(
√

n). Then Q
′′′

(
√

n) \
Q∗∗∗(

√
n) is the disjoint union of 2r subsets A1≤i1,i2,i3,...,ir≤2 ∪ x(A1≤i1,i2,i3,...,ir≤2)

which are invariant under the action of M . More precisely these are the only M -subsets
of Q

′′′
(
√

n) \Q∗∗∗(
√

n) depending upon classes [a, b, c] modulo n.

Proof. : follows directly from Theorem 6 and Lemma 7. ¤

Theorem 11. Let n = 2kpk1
1 pk2

2 · · · pkr
r , where p1, p2, ..., pr are distinct odd primes and

k ≥ 2. If S is any of the G-subsets given in Theorem 6. Let A = S \ Q∗∗∗(
√

n). Then
A ∪ x(A) is M -subset of Q

′′′
(
√

n) \ Q∗∗∗(
√

n). More precisely these are the only M -
subsets of Q

′′′
(
√

n) \Q∗∗∗(
√

n) depending upon classes [a, b, c] modulo n.

Proof. : Proof follows from Theorem 6 and Lemma 7. ¤

If n ≡ 0(mod 3), then by Theorem 5, S = {α ∈ X : c or b ≡ 1(mod 3)} and
−S = {α ∈ X : c or b ≡ −1(mod 3)} are G-subsets whereas if n 6≡ 0(mod 3), then S
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and−S are not G-subsets of Q∗(
√

n). However the following lemma shows that S ∪x(S)
and −S ∪ x(−S) are distinct M -subsets of Q

′′′
(
√

n).

Lemma 12. If n 6≡ 0(mod 9) and Y be any of the G-subsets of Q∗(
√

n). Let X =
Y \ Q∗∗∗(

√
n). Let S = {α ∈ X : c or b ≡ 1(mod 3)} and −S = {α ∈ X : c or b ≡

−1(mod 3)}. Then S ∪ x(S) and −S ∪ x(−S) are both disjoint M -subsets of X ∪ x(X).
Consequently the action of M on each of X ∪ x(X) is intransitive.

If n ≡ 2, 5 or 8(mod 9) then, by Corollary 4, Q∗∗∗(
√

n) is empty. But if n ≡
1, 3, 4, 6 or 7(mod 9), then, by Theorem 3, Q∗∗∗(

√
n) is an M -subset of Q

′′′
(
√

n). If
n ≡ 0(mod 9), then Q∗∗∗(

√
n) is not an M -subset of Q

′′′
(
√

n). Instead we later prove that
Q∗∗∗(

√
9n) ∪ {α

3 : α = 3a+
√

9n
c ∈ Q∗(

√
9n)\Q∗∗∗(

√
9n)} is an M -subset of Q

′′′
(
√

n).
For this we need to establish the following results.

Lemma 13. Let n ≡ 1, 3, 4, 6 or 7(mod 9). Then
1. Q∗∗∗(

√
9n) = Q

′′′
(
√

n) \Q∗(
√

n) and
2. Q∗(

√
n) \Q∗∗∗(

√
n) = {α

3 : α = 3a+
√

9n
c ∈ Q∗(

√
9n) \Q∗∗∗(

√
9n)}.

Proof. : 1. Let a+
√

9n
c ∈ Q∗∗∗(

√
9n) = {a+

√
9n

c ∈ Q∗(
√

9n) and 3 | c}. Then a2−9n
c

and c
3 are both integers and (a, a2−9n

c , c) = 1. As c and 9n are both divisible by 3, so
3 | a. Let a = 3a′, c = 3c′. Now a2−9n

c = 3(a′2−n
c′ ) is not divisible by 3 because

otherwise (a, a2−9n
c , c) 6= 1. So c′ = 3c′′. This shows that (a′)2−n

c′′ is an integer, while
(a′)2−n

c′ is not an integer for otherwise a2−9n
c is divisible by 3, a contradiction. Also

(a, a2−9n
c , c) = 1 ⇔ (a′, (a′)2−n

c′′ , c′′) = 1. Therefore a+
√

9n
c = a′+

√
n

c′ = a′+
√

n
3c′′ ,

wherea′+
√

n

c′′
belongs to Q∗(

√
n). Thus a+

√
9n

c belongs to Q
′′′

(
√

n) \Q∗(
√

n).

Conversely let a+
√

n
3c ∈ Q

′′′
(
√

n) \ Q∗(
√

n). Then , by Lemma 1, a+
√

n
c ∈ Q∗(

√
n)

such that a2−n
c is not divisible by 3 and hence a+

√
n

3c = 3a+
√

9n
9c belongs to Q∗(

√
9n).

Obviously a+
√

n
3c belongs to Q∗∗∗(

√
9n). This completes the first part of Lemma 13.

2. We now prove that {α
3 : α = 3a+

√
9n

c ∈ Q∗(
√

9n) \ Q∗∗∗(
√

9n)} = Q∗(
√

n) \
Q∗∗∗(

√
n). For this let 3a+

√
9n

c ∈ Q∗(
√

9n) \Q∗∗∗(
√

9n). Then 9a2−9n
c is an integer and

(3a, 9a2−9n
c , c) = 1. As 3 - c so 9a2−9n

c = 9(a2−n
c ) is an integer if and only if (a2−n

c ) is
an integer and also (3a, 9a2−9n

c , c) = 1 ⇔ (a, a2−n
c , c) = 1. This implies that 3a+

√
9n

3c =
a+
√

n
c ∈ Q∗(

√
n) \ Q∗∗∗(

√
n). Conversely suppose that a+

√
n

c ∈ Q∗(
√

n) \ Q∗∗∗(
√

n).
Then clearly c is not divisible by 3 and (a, a2−n

c , c) = 1. Also (a, a2−n
c , c) = 1 ⇔

(3a, 9a2−9n
c , c) = 1. Thus a+

√
n

c = 3a+
√

9n
3c = 1

3 ( 3a+
√

9n
c ), where 3a+

√
9n

c ∈ Q∗(
√

9n) \
Q∗∗∗(

√
9n). Hence the result.

The following theorem is an extension of Lemma 13 to the case for all non-square posi-
tive integers n ≡ 0(mod 9) and its proof is like the proof of Lemma 13.

Theorem 14. Let n ≡ 0(mod 9). Then
1. (Q∗(

√
n
9 ) \Q∗∗∗(

√
n
9 )) ∪Q∗∗∗(

√
9n) = Q

′′′
(
√

n) \Q∗(
√

n) and

2. Q∗(
√

n) \Q∗∗∗(
√

n) = {α
3 : α = 3a+

√
9n

c ∈ Q∗(
√

9n) \Q∗∗∗(
√

9n)}.

The following corollary is an immediate consequence of Corollary 4 and Lemma 13.
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Corollary 15. Let n ≡ 2, 5 or 8(mod 9). Then:
1. Q∗∗∗(

√
9n) = Q

′′′
(
√

n) \Q∗(
√

n) and
2. {α

3 : α = 3a+
√

9n
c ∈ Q∗(

√
9n) \Q∗∗∗(

√
9n)} = Q∗(

√
n).

Theorem 16. Let n 6≡ 0(mod 9). Then
Q∗∗∗(

√
9n)∪ {α

3 : α = 3a+
√

9n
c ∈ Q∗(

√
9n) \Q∗∗∗(

√
9n)} is an M -subset of Q

′′′
(
√

n).
Proof: Let n ≡ 1, 3, 4, 6 or 7(mod 9). Then by Lemma 13, Q∗∗∗(

√
9n) = Q

′′′
(
√

n) \
Q∗(

√
n) and {α

3 : α = 3a+
√

9n
c ∈ Q∗(

√
9n) \ Q∗∗∗(

√
9n)} = Q∗(

√
n) \ Q∗∗∗(

√
n).

However, if n ≡ 2, 5 or 8(mod 9) then,as mentioned earlier, Q∗∗∗(
√

n) is empty. Hence
the above result holds for all n 6≡ 0(mod 9). Thus if n 6≡ 0(mod 9) then
Q∗∗∗(

√
9n) ∪ {α

3 : 3a+
√

9n
c ∈ Q∗(

√
9n) \Q∗∗∗(

√
9n)} = Q

′′′
(
√

n) \Q∗∗∗(
√

n).
If n ≡ 2, 5, or 8(mod 9) then, by Corollary 4, Q∗∗∗(

√
n) is empty. However, if n ≡

1, 3, 4, 6 or 7(mod 9) then, by Theorem 3, Q∗∗∗(
√

n) is an M -subset of Q
′′′

(
√

n). Also
since Q∗(

√
n) is not M -subset so Q∗(

√
n) \ Q∗∗∗(

√
n) and Q

′′′
(
√

n) \ Q∗(
√

n) are not
M -subsets of Q

′′′
(
√

n). By Theorems 2 and 3, we know that Q
′′′

(
√

n)\Q∗∗∗(√n) is an
M -subset of Q

′′′
(
√

n) for all n 6≡ 0(mod 9).
Thus Q∗∗∗(

√
9n)∪{α

3 : α = 3a+
√

9n
c ∈ Q∗(

√
9n) \Q∗∗∗(

√
9n)} is an M -subset of Q

′′′
(
√

n)
for all n 6≡ 0(mod 9).
Following theorem is an extension of Theorem 16 for each non-square n and its proof
follows from Theorem 14.

Theorem 17. Let n ≡ 0(mod 9). Then
Q∗∗∗(

√
9n)∪ {α

3 : α = 3a+
√

9n
c ∈ Q∗(

√
9n) \Q∗∗∗(

√
9n)} is an M -subset of Q

′′′
(
√

n).

Theorem 18. Let n ≡ 0(mod 9). Let α = a+
√

n
c ∈ Q∗(

√
n) with b = a2−n

c . Then:
1. If 3 - a then α

3 belongs to Q∗∗∗(
√

9n).
2. If 3 | a then α

3 belongs to Q∗(
√

n
9 ) \Q∗∗∗(

√
n
9 ) or Q∗∗∗(

√
9n) according as

α ∈ Q∗(
√

n) \Q∗∗∗(
√

n) or Q∗∗∗(
√

n).

Proof. Let n ≡ 0(mod 9). Let α = a+
√

n
c ∈ Q∗(

√
n) with b = a2−n

c . Then:
(1) If 3 - a then bc = (a2 − n) ≡ 1, 4 or 7(mod 9) so 3 - b. Therefore, by Lemma 1(2), α

3

belongs to Q∗∗∗(
√

9n).

(2) If 3 | a then (a2 − n) ≡ 0(mod 9). So b, c cannot be both divisible by 3, as otherwise
(a, b, c) 6= 1. Thus exactly one of b, c is divisible by 3. Therefore, again by second part of
Lemma 1, if b is not divisible by 3 then α

3 belongs to Q∗∗∗(
√

9n). But if b is divisible by
3 then, from the proof of Lemma 13(2), α

3 belongs to Q∗(
√

n
9 ) \ Q∗∗∗(

√
n
9 ). That is, α

3

belongs to Q∗(
√

n
9 ) \Q∗∗∗(

√
n
9 ) or Q∗∗∗(

√
9n) according as α ∈ Q∗(

√
n) \Q∗∗∗(

√
n)

or Q∗∗∗(
√

n). ¤

Following example illustrates the above theorem.

Example 19. Let n = 27. Then α = 1+
√

27
1 ∈ Q∗(

√
27) but α

3 = 1+
√

27
3 = 3+

√
243

9 ∈
Q∗∗∗(

√
243). Also β = 3+

√
27

1 ∈ Q∗(
√

27) but β
3 = 1+

√
3

1 ∈ Q∗(
√

3) \ Q∗∗∗(
√

3).
Similarly γ = 3+

√
27

18 ∈ Q∗∗∗(
√

27) whereas γ
3 = 9+

√
243

162 ∈ Q∗∗∗(
√

243).

Summarizing the above results we have the following
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Theorem 20. Let n ≡ 0(mod 9). Then Q
′′′

(
√

n) = (Q∗(
√

n
9 )\Q∗∗∗(

√
n
9 ))∪Q∗(

√
n)∪

Q∗∗∗(
√

9n).

Proof. Follows from Theorems 17 and 18. ¤
We conclude this paper with the following observations.

If n ≡ 2, 5 or 8(mod 9), then Q
′′′

(
√

n), Q
′′′

(
√

9n) \ Q
′′′

(
√

n) are both M -subsets of
Q
′′′

(
√

9n) and in particular Q
′′′

(
√

n) ⊂ Q
′′′

(
√

9n). If n ≡ 1, 3, 4, 6 or 7(mod 9),
then Q

′′′
(
√

n) \ Q∗∗∗(
√

n), and Q
′′′

(
√

9n) \ Q
′′′

(
√

n) are all M -subsets of Q
′′′

(
√

9n).
In particular Q

′′′
(
√

n) \ Q∗∗∗(
√

n) ⊆ Q
′′′

(
√

9n). That is Q
′′′

(
√

9n) ∩ Q
′′′

(
√

n) =
Q
′′′

(
√

n)\Q∗∗∗(
√

n). For the cases n 6≡ 0(mod 9). For n = 2, 9n = 18, Q∗∗∗(
√

2) = {},
Q
′′′

(
√

2) = (
√

2)M ∪ (−√2)M ,and Q
′′′

(
√

18) \ Q
′′′

(
√

2) = (
√

18)M ∪ (−√18)M .
So Q

′′′
(
√

18) has exactly 4 orbits under the action of M . Also if n = 3, 9n = 27,
Q
′′′

(
√

3)\Q∗∗∗(
√

3) = (
√

3)M∪(−√3)M , Q
′′′

(
√

27)\Q′′′
(
√

3) = (
√

27)M∪(−√27)M .
So Q

′′′
(
√

27) has exactly 4 orbits under the action of M . Similarly if n = 5, 9n = 45,
Q
′′′

(
√

5) = (
√

5)M ∪ (−√5)M ∪ ( 1+
√

5
2 )M ∪ ( 1−√5

2 )M , ( 1+
√

45
2 )M ∪ ( 1−√45

2 )M ∪
(
√

45)M ∪ (−√45)M . So Q
′′′

(
√

45) splits into exactly 8 orbits under the action of M .
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