Punjab University
Journal of Mathematics (ISSN 1016-2526)
Vol. 44 (2012) pp. 31-37

Action of the möbius group $M=\left\langle x, y: x^{2}=y^{6}=1\right\rangle$ on certain real quadratic fields

M. Aslam Malik
Department of Mathematics
University of the Punjab
Lahor, Pakistan.
Email: malikpu@yahoo.com
S. M Husnine
Department of Mathematics
National University of Computer and Emerging Sciences
Lahore Campus, Pakistan.
Email: syed.husnine@nu.edu.pk
Abdul Majeed
c/o Department of Mathematics
University of the Punjab
Lahore, Pakistan.
Email: abdul.majeed@nu.edu.pk

Abstract

Let $C^{\prime}=C \cup\{\infty\}$ be the extended complex plane and $M=\left\langle x, y: x^{2}=y^{6}=1\right\rangle$, where $x(z)=\frac{-1}{3 z}$ and $y(z)=\frac{-1}{3(z+1)}$ are the linear fractional transformations from $C^{\prime} \rightarrow C^{\prime}$. Let m be a squarefree positive integer. Then $Q^{*}(\sqrt{n})=\left\{\frac{a+\sqrt{n}}{c}: a, c \neq 0, b=\frac{a^{2}-n}{c} \in\right.$ Z and $(a, b, c)=1\}$ where $n=k^{2} m$, is a proper subset of $Q(\sqrt{m})$ for all $k \in N$. For non-square $n=3^{h} \prod_{i=1}^{r} p_{i}^{k_{i}}$, it was proved in an earlier paper by the same authors that the set $Q^{\prime \prime \prime}(\sqrt{n})=\left\{\frac{\alpha}{t}: \alpha \in\right.$ $\left.Q^{*}(\sqrt{n}), t=1,3\right\}$ is M-set $\forall h \geq 0$ whereas if $h=0$ or 1 , then $\left.Q^{* * *} \sqrt{n}\right)=\left\{\frac{a+\sqrt{n}}{c}: \frac{a+\sqrt{n}}{c} \in Q^{*}(\sqrt{n})\right.$ and $\left.3 \mid c\right\}$ is an M-subset of $Q^{\prime \prime \prime}(\sqrt{n})=Q^{*}(\sqrt{n}) \cup Q^{* * *}(\sqrt{9 n})$. In this paper we prove that if $h \geq 2$, then $Q^{\prime \prime \prime}(\sqrt{n})=\left(Q^{*}\left(\sqrt{\frac{\pi}{9}}\right) \backslash Q^{* * *}\left(\sqrt{\frac{\pi}{9}}\right)\right) \cup Q^{*}(\sqrt{n}) \cup Q^{* * *}(\sqrt{9 n})$ and also determine its proper M-subsets. In particular $Q(\sqrt{m}) \backslash Q=$ $\cup Q^{\prime \prime \prime}\left(\sqrt{k^{2} m}\right)$ for all $k \in N$.

AMS (MOS) Subject Classification Codes: 05C25, 11E04, 20G15
Key Words: Möbius Transformations; Orbit; Real quadratic field.

1. Introduction

Throughout the paper we take m as a square free positive integer. Since every element of $Q(\sqrt{m}) \backslash Q$ can be expressed uniquely as $\frac{a+\sqrt{n}}{c}$, where $n=k^{2} m, k$ is any positive
integer and $a, b=\frac{a^{2}-n}{c}$ and c are relatively prime integers and we denote it by $\alpha_{n}(a, b, c)$ or $\alpha(a, b, c)$. Then

$$
\begin{gathered}
Q^{*}(\sqrt{n})=\left\{\frac{a+\sqrt{n}}{c}: a, c, b=\frac{a^{2}-n}{c} \in Z \text { and }(a, b, c)=1\right\}, \\
Q^{\prime \prime \prime}(\sqrt{n})=\left\{\frac{\alpha}{t}: \alpha \in Q^{*}(\sqrt{n}), t=1,3\right\}, \\
Q^{* * *}(\sqrt{n})=\left\{\frac{a+\sqrt{n}}{c}: \frac{a+\sqrt{n}}{c} \in Q^{*}(\sqrt{n}) \text { and } 3 \mid c\right\}
\end{gathered}
$$

are subsets of the real quadratic field $Q(\sqrt{m})$ for all n and $Q(\sqrt{m}) \backslash Q$ is a disjoint union of $Q^{*}(\sqrt{n})$ for all n. If $\alpha(a, b, c) \in Q^{*}(\sqrt{n})$ and its conjugate $\bar{\alpha}$ have opposite signs then α is called an ambiguous number [7]. A non-empty set Ω with an action of a group G on it, is said to be a G-set. We say that Ω is a transitive G-set if, for any p, q in Ω there exists a g in G such that $p^{g}=q$.

We are interested in linear-fractional transformations x, y satisfying the relations $x^{2}=$ $y^{r}=1$, with a view to studying an action of the group $\langle x, y\rangle$ on real quadratic fields. If $y: z \rightarrow \frac{a z+b}{c z+d}$ is to act on all real quadratic fields then a, b, c, d must be rational numbers, and can be taken to be integers. Thus $\frac{(a+b)^{2}}{a d-b c}$ is rational. But if $z \rightarrow \frac{a z+b}{c z+d}$ is of order of r , one must have $\frac{(a+b)^{2}}{a d-b c}=\omega+\omega^{-1}+2$, where ω is a primitive r-th root of unity. Now $\omega+\omega^{-1}$ is rational, for a primitive r-th root, only if $r=1,2,3,4$ or 6 , so that these are the only possible orders of y. The group $\left\langle x, y: x^{2}=y^{r}=1\right\rangle$ is cyclic of order 2 or D_{∞} (an infinite dihedral group) according as $r=1$ or 2 . For $r=3$, the group $\langle x, y\rangle$ is the modular group $\operatorname{PSL}(2, Z)$. The fractional linear transformations x, y with $x(z)=\frac{-1}{3 z}$ and $y(z)=\frac{-1}{3(z+1)}$ generate a subgroup M of the modular group which is isomorphic to the abstract group $\left\langle x, y: x^{2}=y^{6}=1\right\rangle$. It is a standard example from the theory of the modular group. It has been shown in [10] that the action of M on the rational projective line $Q \cup\{\infty\}$ is transitive.

In our case the set $Q(\sqrt{m}) \backslash Q$ is an M-set. It is noted that M is the free product of $C_{2}=\left\langle x: x^{2}=1\right\rangle$ and $C_{6}=\left\langle x: y^{6}=1\right\rangle$. The action of the modular group $\operatorname{PSL}(2, Z)$ on the real quadratic fields has been discussed in detail in $[1,6,8,9,11,12]$. The actual number of ambiguous numbers in $Q^{*}(\sqrt{n})$ has been discussed in [8] as a function of n.

In a recent paper [11], the authors have investigated that the cardinality of the set E_{p}, p a prime factor of n, consisting of all classes $[a, b, c](\bmod p)$ of the elements of $Q^{*}(\sqrt{n})$ is $p^{3}-1$ and obtained two proper G-subsets of $Q^{*}(\sqrt{n})$ corresponding to each odd prime divisor of n. The same authors in [12] have determined the cardinality of the set $E_{p^{r}}$, $r \geq 1$, consisting of all classes $[a, b, c]\left(\bmod p^{r}\right)$ of the elements of $Q^{*}(\sqrt{n})$ and have determined, for each non-square n, the G-subsets of an invariant subset $Q^{*}(\sqrt{n})$ of $Q(\sqrt{m}) \backslash Q$ under the modular group action by using classes $[a, b, c](\bmod n)$. Real quadratic irrational numbers under the action of the group M have been studied in $[3,4,5,7,10]$. Closed paths in the coset diagrams under the action of a proper subgroup of M on $Q(\sqrt{m})$ have been discussed in [4]. M. Aslam Malik et al. in [2] have studied the action of $H=\left\langle x, y: x^{2}=y^{4}=1\right\rangle$, where $x(z)=\frac{-1}{2 z}$ and $y(z)=\frac{-1}{2(z+1)}$, on $Q(\sqrt{m}) \backslash Q$. The same authors, in [3], have discussed the properties of real quadratic irrational numbers under the action of the group M. The authors proved, in [3], that if $n \equiv 1,3,4,6$ or $7(\bmod 9)$
then $Q^{* * *}(\sqrt{n})$ is an M-subset of $Q(\sqrt{m}) \backslash Q$ and $Q^{\prime \prime \prime}(\sqrt{n})=Q^{*}(\sqrt{n}) \cup Q^{* * *}(\sqrt{9 n})$.
In this paper we extend these results for all non-square integers n and give some modifications of Lemma 1.1 of [3] for the case $n \equiv 0(\bmod 9)$ and prove that $Q^{\prime \prime \prime}(\sqrt{n})=$ $\left(Q^{*}\left(\sqrt{\frac{n}{9}}\right) \backslash Q^{* * *}\left(\sqrt{\frac{n}{9}}\right)\right) \cup Q^{*}(\sqrt{n}) \cup Q^{* * *}(\sqrt{9 n})$ which shows that $Q(\sqrt{m}) \backslash Q$ is the union of $Q^{\prime \prime \prime}\left(\sqrt{k^{2} m}\right) \forall k \in N$. However if n and n^{\prime} are two distinct non-square positive integers then $Q^{*}(\sqrt{n}) \cap Q^{*}\left(\sqrt{n^{\prime}}\right)=\phi$ whereas $Q^{\prime \prime \prime}(\sqrt{n}) \cap Q^{\prime \prime \prime}\left(\sqrt{n^{\prime}}\right)$ may or may not be empty. In particular $Q^{\prime \prime \prime}(\sqrt{n}) \cap Q^{\prime \prime \prime}(\sqrt{9 n})$ is not empty. In fact we prove that a superset namely

$$
Q^{* * *}(\sqrt{9 n}) \cup\left\{\frac{\alpha}{3}: \alpha=\frac{3 a+\sqrt{9 n}}{c} \in Q^{*}(\sqrt{9 n}) \backslash Q^{* * *}(\sqrt{9 n})\right\}
$$

of $Q^{* * *}(\sqrt{9 n})$ is an M-subset of $Q(\sqrt{m}) \backslash Q$.
We have also found M-subsets of $Q^{\prime \prime \prime}(\sqrt{n})$ such that these may or may not be transitive. However they help in determining the transitive M-subsets (M-orbits). The notation is standard and we follow [3], [9], [11] and [12]. In particular $(\% /)$ denotes the Legendre symbol and $x(Y)=\left\{\frac{-1}{3 \alpha}: \alpha \in Y\right\}$ for each subset Y of $Q(\sqrt{m}) \backslash Q$. Throughout this paper, n denotes a non-square positive integer and α denotes $\frac{a+\sqrt{n}}{c}$ with $b=\frac{a^{2}-n}{c}$ such that $(a, b, c)=1$.

2. Preliminaries

The following results of [3], [11] and [12] will be used in the sequel.
Lemma 1. ([3]). Let $\alpha=\frac{a+\sqrt{n}}{c} \in Q^{*}(\sqrt{n})$ with $b=\frac{a^{2}-n}{c}$. Then:

1. If $n \not \equiv 0(\bmod 9)$ then $\frac{\alpha}{3} \in Q^{* * *}(\sqrt{n})$ if and only if $3 \mid b$.
2. $\frac{\alpha}{3} \in Q^{* * *}(\sqrt{9 n})$ if and only if $3 \nmid b$.

Theorem 2. ([3]) The set $Q^{\prime \prime \prime}(\sqrt{n})=\left\{\frac{\alpha}{t}: \alpha \in Q^{*}(\sqrt{n}), t=1,3\right\}$ is invariant under the action of M.

Theorem 3. (see [3]) For each $n \equiv 1,3,4,6$ or $7(\bmod 9)$,

$$
\left.Q^{* * *} \sqrt{n}\right)=\left\{\frac{a+\sqrt{n}}{c}: \frac{a+\sqrt{n}}{c} \in Q^{*}(\sqrt{n}) \text { and } 3 \mid c\right\}
$$

is an M-subset of $Q^{\prime \prime \prime}(\sqrt{n})$.
Corollary 4. ([3]) $Q^{* * *}(\sqrt{n})=\emptyset$ if and only if $n \equiv 2(\bmod 3)$.
It is well known that $G=\left\langle x, y: x^{2}=y^{3}=1\right\rangle$ represents the modular group, where $x(z)=\frac{-1}{z}, y(z)=\frac{z-1}{z}$ are linear fractional transformations.
Theorem 5. ([11]) Let p be an odd prime factor of n. Then both of $S_{1}^{p}=\left\{\alpha \in Q^{*}(\sqrt{n})\right.$: (b / p) or $(c / p)=1\}$ and $S_{2}^{p}=\left\{\alpha \in Q^{*}(\sqrt{n}):(b / p)\right.$ or $\left.(c / p)=-1\right\}$ are G-subsets of $Q^{*}(\sqrt{n})$. In particular, these are the only G-subsets of $Q^{*}(\sqrt{n})$ depending upon classes $[a, b, c]$ modulo p.
Theorem 6. ([12]) Let $n=2^{k} p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$ where $p_{1}, p_{2}, \ldots, p_{r}$ are distinct odd primes such that n is not equal to a single prime congruent to 1 modulo 8 . Then the number of G-subsets of $Q^{*}(\sqrt{n})$ is 2^{r} namely $S_{1 \leq i_{1}, i_{2}, i_{3}, \ldots, i_{r} \leq 2}$ if $k=0$ or 1 . Moreover if $k \geq 2$, then each G-subset X of these G-subsets further splits into two proper G-subsets $\{\alpha \in$ $X: b$ or $c \equiv 1(\bmod 4)\}$ and $\{\alpha \in X: b$ or $c \equiv-1(\bmod 4)\}$. Thus the number of G-subsets of $Q^{*}(\sqrt{n})$ is 2^{r+1} if $k \geq 2$. More precisely these are the only G-subsets of $Q^{*}(\sqrt{n})$ depending upon classes $[a, b, c]$ modulo n.

$$
\text { 3. ACTION OF } M=\left\langle x, y: x^{2}=y^{6}=1\right\rangle \text { on } Q^{\prime \prime \prime}(\sqrt{n})
$$

In this section we establish that if n contains r distinct prime factors then $Q^{\prime \prime \prime}(\sqrt{n}) \backslash$ $Q^{* * *}(\sqrt{n})$ is the disjoint union of 2^{r} subsets which are invariant under the action of M. However these M invariant subsets may further split into transitive M-subsets (M-orbits) of $Q^{\prime \prime \prime}(\sqrt{n})$, for example $Q^{\prime \prime \prime}(\sqrt{37})$ splits into twelve orbits namely $(\sqrt{37})^{M},(-\sqrt{37})^{M}$, $\left(\frac{1+\sqrt{37}}{4}\right)^{M},\left(\frac{-1+\sqrt{37}}{4}\right)^{M},\left(\frac{1+\sqrt{37}}{-4}\right)^{M},\left(\frac{-1+\sqrt{37}}{-4}\right)^{M},\left(\frac{1+\sqrt{37}}{3}\right)^{M},\left(\frac{-1+\sqrt{37}}{-3}\right)^{M},\left(\frac{1+\sqrt{37}}{6}\right)^{M}$, $\left(\frac{-1+\sqrt{37}}{-6}\right)^{M},\left(\frac{1+\sqrt{37}}{2}\right)^{M}$ and $\left(\frac{1+\sqrt{37}}{-2}\right)^{M}$. The first six orbits are contained in $A_{1}^{37} \cup x\left(A_{1}^{37}\right)$ and last four orbits are contained in $A_{2}^{37} \cup x\left(A_{2}^{37}\right)$ where $A_{1}^{37}=S_{1}^{37} \backslash Q^{* * *}(\sqrt{37})$ and $A_{2}^{37}=S_{2}^{37} \backslash Q^{* * *}(\sqrt{37})$.
Lemma 7. Let $n \equiv 1,3,4,6$ or $7(\bmod 9)$. Let $Y=S \backslash Q^{* * *}(\sqrt{n})$ where S is any G-subset of $Q^{*}(\sqrt{n})$. Then $Y \cup x(Y)$ is an M-subset of $Q^{\prime \prime \prime}(\sqrt{n}) \backslash Q^{* * *}(\sqrt{n})$.
Proof. : By Theorem 3, we know that $Q^{\prime \prime \prime}(\sqrt{n}) \backslash Q^{* * *}(\sqrt{n})$ is an M-set. For any $\alpha \in$ $Q^{\prime \prime \prime}(\sqrt{n}) \backslash Q^{* * *}(\sqrt{n})$, Lemma 7 follows from the equations $x(\alpha)=\frac{-1}{3 \alpha}, x\left(\frac{-1}{3 \alpha}\right)=\alpha$, $y(\alpha)=\frac{-1}{3(\alpha+1)}=\frac{-1}{3 \alpha^{\prime}}$, where $\alpha^{\prime}=\alpha+1$ and $y\left(\frac{-1}{3 \alpha}\right)=\frac{-1}{3 \beta}$, where $\beta=\frac{-1}{3 \alpha}+1$. Since every element of the group $M=\left\langle x, y: x^{2}=y^{6}=1\right\rangle$ is a word in the generators x, y of the group M and the transformations $\alpha \longmapsto \alpha+1, \alpha \longmapsto \alpha-1$ belong to both of the groups G and M.

The following corollary is an immediate consequence of Lemma 7 since we know by Corollary 4 that $Q^{* * *}(\sqrt{n})=\emptyset$ if and only if $n \equiv 2(\bmod 3)$.
Corollary 8. Let $n \equiv 2(\bmod 3)$. Let S be any G-subset of $Q^{*}(\sqrt{n})$. Then $S \cup x(S)$ is an M-subset of $Q^{\prime \prime \prime}(\sqrt{n})$.
Theorem 9. Let $n \equiv 1,3,4,6$ or $7(\bmod 9)$ be a non-square positive integer such that $p \mid n$. Let $A_{1}^{p}=S_{1}^{p} \backslash Q^{* * *}(\sqrt{n})$ and $A_{2}^{p}=S_{2}^{p} \backslash Q^{* * *}(\sqrt{n})$. Then both of $A_{1}^{p} \cup x\left(A_{1}^{p}\right)$ and $A_{2}^{p} \cup x\left(A_{2}^{p}\right)$ are M-subsets of $Q^{\prime \prime \prime}(\sqrt{n}) \backslash Q^{* * *}(\sqrt{n})$. Consequently the action of M on $Q^{\prime \prime \prime}(\sqrt{n}) \backslash Q^{* * *}(\sqrt{n})$ is intransitive.

Proof. : follows from Theorem 5 and Lemma 7.
We now extend Theorem 9 for each non-square n.
Theorem 10. Let $n=2^{k} p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$, where $p_{1}, p_{2}, \ldots, p_{r}$ are distinct odd primes and $k=0$ or 1. Let $A_{1 \leq i_{1}, i_{2}, i_{3}, \ldots, i_{r} \leq 2}=S_{1 \leq i_{1}, i_{2}, i_{3}, \ldots, i_{r} \leq 2} \backslash Q^{* * *}(\sqrt{n})$. Then $Q^{\prime \prime \prime}(\sqrt{n}) \backslash$ $Q^{* * *}(\sqrt{n})$ is the disjoint union of 2^{r} subsets $A_{1 \leq i_{1}, i_{2}, i_{3}, \ldots, i_{r} \leq 2} \cup x\left(A_{1 \leq i_{1}, i_{2}, i_{3}, \ldots, i_{r} \leq 2}\right)$ which are invariant under the action of M. More precisely these are the only M-subsets of $Q^{\prime \prime \prime}(\sqrt{n}) \backslash Q^{* * *}(\sqrt{n})$ depending upon classes $[a, b, c]$ modulo n.
Proof. : follows directly from Theorem 6 and Lemma 7.
Theorem 11. Let $n=2^{k} p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$, where $p_{1}, p_{2}, \ldots, p_{r}$ are distinct odd primes and $k \geq 2$. If S is any of the G-subsets given in Theorem 6. Let $A=S \backslash Q^{* * *}(\sqrt{n})$. Then $A \cup x(A)$ is M-subset of $Q^{\prime \prime \prime}(\sqrt{n}) \backslash Q^{* * *}(\sqrt{n})$. More precisely these are the only M subsets of $Q^{\prime \prime \prime}(\sqrt{n}) \backslash Q^{* * *}(\sqrt{n})$ depending upon classes $[a, b, c]$ modulo n.

Proof. : Proof follows from Theorem 6 and Lemma 7.
If $n \equiv 0(\bmod 3)$, then by Theorem $5, S=\{\alpha \in X: c$ or $b \equiv 1(\bmod 3)\}$ and $-S=\{\alpha \in X:$ cor $b \equiv-1(\bmod 3)\}$ are G-subsets whereas if $n \not \equiv 0(\bmod 3)$, then S
and $-S$ are not G-subsets of $Q^{*}(\sqrt{n})$. However the following lemma shows that $S \cup x(S)$ and $-S \cup x(-S)$ are distinct M-subsets of $Q^{\prime \prime \prime}(\sqrt{n})$.

Lemma 12. If $n \not \equiv 0(\bmod 9)$ and Y be any of the G-subsets of $Q^{*}(\sqrt{n})$. Let $X=$ $Y \backslash Q^{* * *}(\sqrt{n})$. Let $S=\{\alpha \in X:$ c or $b \equiv 1(\bmod 3)\}$ and $-S=\{\alpha \in X:$ c or $b \equiv$ $-1(\bmod 3)\}$. Then $S \cup x(S)$ and $-S \cup x(-S)$ are both disjoint M-subsets of $X \cup x(X)$. Consequently the action of M on each of $X \cup x(X)$ is intransitive.

If $n \equiv 2,5$ or $8(\bmod 9)$ then, by Corollary $4, Q^{* * *}(\sqrt{n})$ is empty. But if $n \equiv$ $1,3,4,6$ or $7(\bmod 9)$, then, by Theorem 3, $Q^{* * *}(\sqrt{n})$ is an M-subset of $Q^{\prime \prime \prime}(\sqrt{n})$. If $n \equiv 0(\bmod 9)$, then $Q^{* * *}(\sqrt{n})$ is not an M-subset of $Q^{\prime \prime \prime}(\sqrt{n})$. Instead we later prove that $Q^{* * *}(\sqrt{9 n}) \cup\left\{\frac{\alpha}{3}: \alpha=\frac{3 a+\sqrt{9 n}}{c} \in Q^{*}(\sqrt{9 n}) \backslash Q^{* * *}(\sqrt{9 n})\right\}$ is an M-subset of $Q^{\prime \prime \prime}(\sqrt{n})$. For this we need to establish the following results.

Lemma 13. Let $n \equiv 1,3,4,6$ or $7(\bmod 9)$. Then

1. $Q^{* * *}(\sqrt{9 n})=Q^{\prime \prime \prime}(\sqrt{n}) \backslash Q^{*}(\sqrt{n})$ and
2. $Q^{*}(\sqrt{n}) \backslash Q^{* * *}(\sqrt{n})=\left\{\frac{\alpha}{3}: \alpha=\frac{3 a+\sqrt{9 n}}{c} \in Q^{*}(\sqrt{9 n}) \backslash Q^{* * *}(\sqrt{9 n})\right\}$.

Proof. : 1. Let $\frac{a+\sqrt{9 n}}{c} \in Q^{* * *}(\sqrt{9 n})=\left\{\frac{a+\sqrt{9 n}}{c} \in Q^{*}(\sqrt{9 n})\right.$ and $\left.3 \mid c\right\}$. Then $\frac{a^{2}-9 n}{c}$ and $\frac{c}{3}$ are both integers and $\left(a, \frac{a^{2}-9 n}{c}, c\right)=1$. As c and $9 n$ are both divisible by 3 , so $3 \mid a$. Let $a=3 a^{\prime}, c=3 c^{\prime}$. Now $\frac{a^{2}-9 n}{c}=3\left(\frac{a^{\prime 2}-n}{c^{\prime}}\right)$ is not divisible by 3 because otherwise $\left(a, \frac{a^{2}-9 n}{c}, c\right) \neq 1$. So $c^{\prime}=3 c^{\prime \prime}$. This shows that $\frac{\left(a^{\prime}\right)^{2}-n}{c^{\prime \prime}}$ is an integer, while $\frac{\left(a^{\prime}\right)^{2}-n}{c^{\prime}}$ is not an integer for otherwise $\frac{a^{2}-9 n}{c}$ is divisible by 3, a contradiction. Also $\left(a, \frac{a^{2}-9 n}{c}, c\right)=1 \Leftrightarrow\left(a^{\prime}, \frac{\left(a^{\prime}\right)^{2}-n}{c^{\prime \prime}}, c^{\prime \prime}\right)=1$. Therefore $\frac{a+\sqrt{9 n}}{c}=\frac{a^{\prime}+\sqrt{n}}{c^{\prime}}=\frac{a^{\prime}+\sqrt{n}}{3 c^{\prime \prime}}$, where $\frac{a^{\prime}+\sqrt{n}}{c^{\prime \prime}}$ belongs to $Q^{*}(\sqrt{n})$. Thus $\frac{a+\sqrt{9 n}}{c}$ belongs to $Q^{\prime \prime \prime}(\sqrt{n}) \backslash Q^{*}(\sqrt{n})$.

Conversely let $\frac{a+\sqrt{n}}{3 c} \in Q^{\prime \prime \prime}(\sqrt{n}) \backslash Q^{*}(\sqrt{n})$. Then, by Lemma $1, \frac{a+\sqrt{n}}{c} \in Q^{*}(\sqrt{n})$ such that $\frac{a^{2}-n}{c}$ is not divisible by 3 and hence $\frac{a+\sqrt{n}}{3 c}=\frac{3 a+\sqrt{9 n}}{9 c}$ belongs to $Q^{*}(\sqrt{9 n})$. Obviously $\frac{a+\sqrt{n}}{3 c}$ belongs to $Q^{* * *}(\sqrt{9 n})$. This completes the first part of Lemma 13.
2. We now prove that $\left\{\frac{\alpha}{3}: \alpha=\frac{3 a+\sqrt{9 n}}{c} \in Q^{*}(\sqrt{9 n}) \backslash Q^{* * *}(\sqrt{9 n})\right\}=Q^{*}(\sqrt{n}) \backslash$ $Q^{* * *}(\sqrt{n})$. For this let $\frac{3 a+\sqrt{9 n}}{c} \in Q^{*}(\sqrt{9 n}) \backslash Q^{* * *}(\sqrt{9 n})$. Then $\frac{9 a^{2}-9 n}{c}$ is an integer and $\left(3 a, \frac{9 a^{2}-9 n}{c}, c\right)=1$. As $3 \nmid c$ so $\frac{9 a^{2}-9 n}{c}=9\left(\frac{a^{2}-n}{c}\right)$ is an integer if and only if $\left(\frac{a^{2}-n}{c}\right)$ is an integer and also $\left(3 a, \frac{9 a^{2}-9 n}{c}, c\right)=1 \Leftrightarrow\left(a, \frac{a^{c}-n}{c}, c\right)=1$. This implies that $\frac{3 a+\sqrt{9 n}}{3 c}=$ $\frac{a+\sqrt{n}}{c} \in Q^{*}(\sqrt{n}) \backslash Q^{* * *}(\sqrt{n})$. Conversely suppose that $\frac{a+\sqrt{n}}{c} \in Q^{*}(\sqrt{n}) \backslash Q^{* * *}(\sqrt{n})$. Then clearly c is not divisible by 3 and $\left(a, \frac{a^{2}-n}{c}, c\right)=1$. Also $\left(a, \frac{a^{2}-n}{c}, c\right)=1 \Leftrightarrow$ $\left(3 a, \frac{9 a^{2}-9 n}{c}, c\right)=1$. Thus $\frac{a+\sqrt{n}}{c}=\frac{3 a+\sqrt{9 n}}{3 c}=\frac{1}{3}\left(\frac{3 a+\sqrt{9 n}}{c}\right)$, where $\frac{3 a+\sqrt{9 n}}{c} \in Q^{*}(\sqrt{9 n}) \backslash$ $Q^{* * *}(\sqrt{9 n})$. Hence the result.

The following theorem is an extension of Lemma 13 to the case for all non-square positive integers $n \equiv 0(\bmod 9)$ and its proof is like the proof of Lemma 13.

Theorem 14. Let $n \equiv 0(\bmod 9)$. Then

1. $\left(Q^{*}\left(\sqrt{\frac{n}{9}}\right) \backslash Q^{* * *}\left(\sqrt{\frac{n}{9}}\right)\right) \cup Q^{* * *}(\sqrt{9 n})=Q^{\prime \prime \prime}(\sqrt{n}) \backslash Q^{*}(\sqrt{n})$ and
2. $Q^{*}(\sqrt{n}) \backslash Q^{* * *}(\sqrt{n})=\left\{\frac{\alpha}{3}: \alpha=\frac{3 a+\sqrt{9 n}}{c} \in Q^{*}(\sqrt{9 n}) \backslash Q^{* * *}(\sqrt{9 n})\right\}$.

The following corollary is an immediate consequence of Corollary 4 and Lemma 13.

Corollary 15. Let $n \equiv 2,5$ or $8(\bmod 9)$. Then:

1. $Q^{* * *}(\sqrt{9 n})=Q^{\prime \prime \prime}(\sqrt{n}) \backslash Q^{*}(\sqrt{n})$ and
2. $\left\{\frac{\alpha}{3}: \alpha=\frac{3 a+\sqrt{9 n}}{c} \in Q^{*}(\sqrt{9 n}) \backslash Q^{* * *}(\sqrt{9 n})\right\}=Q^{*}(\sqrt{n})$.

Theorem 16. Let $n \not \equiv 0(\bmod 9)$. Then $Q^{* * *}(\sqrt{9 n}) \cup\left\{\frac{\alpha}{3}: \alpha=\frac{3 a+\sqrt{9 n}}{c} \in Q^{*}(\sqrt{9 n}) \backslash Q^{* * *}(\sqrt{9 n})\right\}$ is an M-subset of $Q^{\prime \prime \prime}(\sqrt{n})$. Proof: Let $n \equiv 1,3,4,6$ or $7(\bmod 9)$. Then by Lemma $13, Q^{* * *}(\sqrt{9 n})=Q^{\prime \prime \prime}(\sqrt{n}) \backslash$ $Q^{*}(\sqrt{n})$ and $\left\{\frac{\alpha}{3}: \alpha=\frac{3 a+\sqrt{9 n}}{c} \in Q^{*}(\sqrt{9 n}) \backslash Q^{* * *}(\sqrt{9 n})\right\}=Q^{*}(\sqrt{n}) \backslash Q^{* * *}(\sqrt{n})$. However, if $n \equiv 2,5$ or $8(\bmod 9)$ then, as mentioned earlier, $Q^{* * *}(\sqrt{n})$ is empty. Hence the above result holds for all $n \not \equiv 0(\bmod 9)$. Thus if $n \not \equiv 0(\bmod 9)$ then
$Q^{* * *}(\sqrt{9 n}) \cup\left\{\frac{\alpha}{3}: \frac{3 a+\sqrt{9 n}}{c} \in Q^{*}(\sqrt{9 n}) \backslash Q^{* * *}(\sqrt{9 n})\right\}=Q^{\prime \prime \prime}(\sqrt{n}) \backslash Q^{* * *}(\sqrt{n})$.
If $n \equiv 2,5$, or $8(\bmod 9)$ then, by Corollary $4, Q^{* * *}(\sqrt{n})$ is empty. However, if $n \equiv$ $1,3,4,6$ or $7(\bmod 9)$ then, by Theorem $3, Q^{* * *}(\sqrt{n})$ is an M-subset of $Q^{\prime \prime \prime}(\sqrt{n})$. Also since $Q^{*}(\sqrt{n})$ is not M-subset so $Q^{*}(\sqrt{n}) \backslash Q^{* * *}(\sqrt{n})$ and $Q^{\prime \prime \prime}(\sqrt{n}) \backslash Q^{*}(\sqrt{n})$ are not M-subsets of $Q^{\prime \prime \prime}(\sqrt{n})$. By Theorems 2 and 3, we know that $Q^{\prime \prime \prime}(\sqrt{n}) \backslash Q^{* * *}(\sqrt{n})$ is an M-subset of $Q^{\prime \prime \prime}(\sqrt{n})$ for all $n \not \equiv 0(\bmod 9)$.
Thus $Q^{* * *}(\sqrt{9 n}) \cup\left\{\frac{\alpha}{3}: \alpha=\frac{3 a+\sqrt{9 n}}{c} \in Q^{*}(\sqrt{9 n}) \backslash Q^{* * *}(\sqrt{9 n})\right\}$ is an M-subset of $Q^{\prime \prime \prime}(\sqrt{n})$ for all $n \not \equiv 0(\bmod 9)$.
Following theorem is an extension of Theorem 16 for each non-square n and its proof follows from Theorem 14.

Theorem 17. Let $n \equiv 0(\bmod 9)$. Then
$Q^{* * *}(\sqrt{9 n}) \cup\left\{\frac{\alpha}{3}: \alpha=\frac{3 a+\sqrt{9 n}}{c} \in Q^{*}(\sqrt{9 n}) \backslash Q^{* * *}(\sqrt{9 n})\right\}$ is an M-subset of $Q^{\prime \prime \prime}(\sqrt{n})$.
Theorem 18. Let $n \equiv 0(\bmod 9)$. Let $\alpha=\frac{a+\sqrt{n}}{c} \in Q^{*}(\sqrt{n})$ with $b=\frac{a^{2}-n}{c}$. Then:

1. If $3 \nmid$ a then $\frac{\alpha}{3}$ belongs to $Q^{* * *}(\sqrt{9 n})$.
2. If $3 \mid$ a then $\frac{\alpha}{3}$ belongs to $Q^{*}\left(\sqrt{\frac{n}{9}}\right) \backslash Q^{* * *}\left(\sqrt{\frac{\pi}{9}}\right)$ or $Q^{* * *}(\sqrt{9 n})$ according as $\alpha \in Q^{*}(\sqrt{n}) \backslash Q^{* * *}(\sqrt{n})$ or $Q^{* * *}(\sqrt{n})$.

Proof. Let $n \equiv 0(\bmod 9)$. Let $\alpha=\frac{a+\sqrt{n}}{c} \in Q^{*}(\sqrt{n})$ with $b=\frac{a^{2}-n}{c}$. Then:
(1) If $3 \nmid a$ then $b c=\left(a^{2}-n\right) \equiv 1,4$ or $7(\bmod 9)$ so $3 \nmid b$. Therefore, by Lemma $1(2), \frac{\alpha}{3}$ belongs to $Q^{* * *}(\sqrt{9 n})$.
(2) If $3 \mid a$ then $\left(a^{2}-n\right) \equiv 0(\bmod 9)$. So b, c cannot be both divisible by 3 , as otherwise $(a, b, c) \neq 1$. Thus exactly one of b, c is divisible by 3 . Therefore, again by second part of Lemma 1 , if b is not divisible by 3 then $\frac{\alpha}{3}$ belongs to $Q^{* * *}(\sqrt{9 n})$. But if b is divisible by 3 then, from the proof of Lemma 13(2), $\frac{\alpha}{3}$ belongs to $Q^{*}\left(\sqrt{\frac{n}{9}}\right) \backslash Q^{* * *}\left(\sqrt{\frac{n}{9}}\right)$. That is, $\frac{\alpha}{3}$ belongs to $Q^{*}\left(\sqrt{\frac{n}{9}}\right) \backslash Q^{* * *}\left(\sqrt{\frac{n}{9}}\right)$ or $Q^{* * *}(\sqrt{9 n})$ according as $\alpha \in Q^{*}(\sqrt{n}) \backslash Q^{* * *}(\sqrt{n})$ or $Q^{* * *}(\sqrt{n})$.

Following example illustrates the above theorem.
Example 19. Let $n=27$. Then $\alpha=\frac{1+\sqrt{27}}{1} \in Q^{*}(\sqrt{27})$ but $\frac{\alpha}{3}=\frac{1+\sqrt{27}}{3}=\frac{3+\sqrt{243}}{9} \in$ $Q^{* * *}(\sqrt{243})$. Also $\beta=\frac{3+\sqrt{27}}{1} \in Q^{*}(\sqrt{27})$ but $\frac{\beta}{3}=\frac{1+\sqrt{3}}{1} \in Q^{*}(\sqrt{3}) \backslash Q^{* * *}(\sqrt{3})$. Similarly $\gamma=\frac{3+\sqrt{27}}{18} \in Q^{* * *}(\sqrt{27})$ whereas $\frac{\gamma}{3}=\frac{9+\sqrt{243}}{162} \in Q^{* * *}(\sqrt{243})$.

Summarizing the above results we have the following

Theorem 20. Let $n \equiv 0(\bmod 9)$. Then $Q^{\prime \prime \prime}(\sqrt{n})=\left(Q^{*}\left(\sqrt{\frac{n}{9}}\right) \backslash Q^{* * *}\left(\sqrt{\frac{n}{9}}\right)\right) \cup Q^{*}(\sqrt{n}) \cup$ $Q^{* * *}(\sqrt{9 n})$.
Proof. Follows from Theorems 17 and 18.
We conclude this paper with the following observations.
If $n \equiv 2,5$ or $8(\bmod 9)$, then $Q^{\prime \prime \prime}(\sqrt{n}), Q^{\prime \prime \prime}(\sqrt{9 n}) \backslash Q^{\prime \prime \prime}(\sqrt{n})$ are both M-subsets of $Q^{\prime \prime \prime}(\sqrt{9 n})$ and in particular $Q^{\prime \prime \prime}(\sqrt{n}) \subset Q^{\prime \prime \prime}(\sqrt{9 n})$. If $n \equiv 1,3,4,6$ or $7(\bmod 9)$, then $Q^{\prime \prime \prime}(\sqrt{n}) \backslash Q^{* * *}(\sqrt{n})$, and $Q^{\prime \prime \prime}(\sqrt{9 n}) \backslash Q^{\prime \prime \prime}(\sqrt{n})$ are all M-subsets of $Q^{\prime \prime \prime}(\sqrt{9 n})$. In particular $Q^{\prime \prime \prime}(\sqrt{n}) \backslash Q^{* * *}(\sqrt{n}) \subseteq Q^{\prime \prime \prime}(\sqrt{9 n})$. That is $Q^{\prime \prime \prime}(\sqrt{9 n}) \cap Q^{\prime \prime \prime}(\sqrt{n})=$ $Q^{\prime \prime \prime}(\sqrt{n}) \backslash Q^{* * *}(\sqrt{n})$. For the cases $n \not \equiv 0(\bmod 9)$. For $n=2,9 n=18, Q^{* * *}(\sqrt{2})=\{ \}$, $Q^{\prime \prime \prime}(\sqrt{2})=(\sqrt{2})^{M} \cup(-\sqrt{2})^{M}$, and $Q^{\prime \prime \prime}(\sqrt{18}) \backslash Q^{\prime \prime \prime}(\sqrt{2})=(\sqrt{18})^{M} \cup(-\sqrt{18})^{M}$.
So $Q^{\prime \prime \prime}(\sqrt{18})$ has exactly 4 orbits under the action of M. Also if $n=3,9 n=27$, $Q^{\prime \prime \prime}(\sqrt{3}) \backslash Q^{* * *}(\sqrt{3})=(\sqrt{3})^{M} \cup(-\sqrt{3})^{M}, Q^{\prime \prime \prime}(\sqrt{27}) \backslash Q^{\prime \prime \prime}(\sqrt{3})=(\sqrt{27})^{M} \cup(-\sqrt{27})^{M}$. So $Q^{\prime \prime \prime}(\sqrt{27})$ has exactly 4 orbits under the action of M. Similarly if $n=5,9 n=45$, $Q^{\prime \prime \prime}(\sqrt{5})=(\sqrt{5})^{M} \cup(-\sqrt{5})^{M} \cup\left(\frac{1+\sqrt{5}}{2}\right)^{M} \cup\left(\frac{1-\sqrt{5}}{2}\right)^{M},\left(\frac{1+\sqrt{45}}{2}\right)^{M} \cup\left(\frac{1-\sqrt{45}}{2}\right)^{M} \cup$ $(\sqrt{45})^{M} \cup(-\sqrt{45})^{M}$. So $Q^{\prime \prime \prime}(\sqrt{45})$ splits into exactly 8 orbits under the action of M.

Acknowledgment The authors wish to thank the referees for their valuable suggestions which improved the paper.

REFERENCES

[1] M. Aslam Malik, S. M. Husnine and A. Majeed: Modular Group Action on Certain Quadratic Fields, PUJM. 28 (1995) 47-68.
[2] M. Aslam Malik, S. M. Husnine, and A. Majeed: Properties of Real Quadratic Irrational Numbers under the action of group $H=\left\langle x, y: x^{2}=y^{4}=1\right\rangle$. Studia Scientiarum Mathematicarum Hungarica. 42(4) (2005) 371-386.
[3] M. Aslam Malik, S. M. Husnine and A. Majeed, Action of the group $M=\left\langle x, y: x^{2}=y^{6}=1\right\rangle$ on certain real quadratic fields, PUJM. 36 (2003-04) 71- 88.
[4] M.Aslam Noor, Q Mushtaq, Closed paths in the coset diagrams for $\left\langle y, t: y^{6}=t^{6}=1\right\rangle$ acting on certain real quadratic fields, Ars Comb. 71 (2004) 267-288.
[5] M.Aslam, Q Mushtaq, T Maqsood and M Ashiq, Real Quadratic Irrational Numbers and the group $\langle x, y$: $\left.x^{2}=y^{6}=1\right\rangle$ on $Q(\sqrt{n})$, Southeast Asian Bull. Math. 27 (2003) 409-415.
[6] Q. Mushtaq: Modular Group acting on Real Quadratic Fields, Bull. Austral. Math. Soc. 37 (1988) 303-309.
[7] Q. Mushtaq, M. Aslam, Group Generated by two elements of orders 2 and 6 acting on R and $Q(\sqrt{n})$, Discrete Mathematics. 179 (1998) 145-154.
[8] S. M. Husnine, M. Aslam Malik, and A. Majeed: On Ambiguous Numbers of an invariant subset $Q^{*}\left(\sqrt{k^{2} m}\right)$ of $Q(\sqrt{m})$ under the action of the Modular Group PSL(2,Z), Studia Scientiarum Mathematicarum Hungarica. 42(4) (2005) 401-412.
[9] M. Aslam Malik, S. M. Husnine and A. Majeed: Intrasitive Action of the Modular Group $P S L(2, Z)$ on a subset $Q^{*}\left(\sqrt{k^{2} m}\right)$ of $Q(\sqrt{m})$, PUJM. 37 (2005) 31-38.
[10] Q Mushtaq, M.Aslam, Transitive Action of a Two Generator group on rational Projective Line, Southeast Asian Bulletin of Mathematics. 31(6) (1997) 203-207.
[11] M. Aslam Malik, M. Asim Zafar: Real Quadratic Irrational Numbers and Modular Group Action, Southeast Asian Bulletin of Mathematics 35 (3) (2011).
[12] M. Aslam Malik, M. Asim Zafar: G-subsets of an invariant subset $Q^{*}\left(\sqrt{k^{2} m}\right)$ of $Q(\sqrt{m}) \backslash Q$ under the Modular Group Action (submitted).

